A Spatially Explicit Comparison of Quantitative and Categorical Modelling Approaches for Mapping Seabed Sediments Using Random Forest
نویسندگان
چکیده
منابع مشابه
Mapping seabed sediments: Comparison of manual, geostatistical, object based image analysis and machine learning approaches
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact t...
متن کاملA multiscale approach to mapping seabed sediments
Benthic habitat maps, including maps of seabed sediments, have become critical spatial-decision support tools for marine ecological management and conservation. Despite the increasing recognition that environmental variables should be considered at multiple spatial scales, variables used in habitat mapping are often implemented at a single scale. The objective of this study was to evaluate the ...
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولSpatially Adaptive Random Forest
Medical imaging protocols produce large amounts of multimodal volumetric images. The large size of the datasets contributes to the success of supervised discriminative methods for semantic image segmentation. Classifying relevant structures in medical images is challenging due to (a) the large size of data volumes, and (b) the severe class overlap in the feature space. Subsampling the training ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geosciences
سال: 2019
ISSN: 2076-3263
DOI: 10.3390/geosciences9060254